夓 招 # 題

頁,共

王	华	洲	故	
甸		户	半	
-भागे		班	學	
			平	
原	TIII	麗	度	
禁止使用掌上型計算機	普通物理	材料科學與工程學系二年級、物理學系物理組二年級、物理學系奈米與光電科學組二年級	九十九 招 生 類 別 轉學招生考試	

韓學来 2010

- 1. A uniform rod of length L and mass M is free to rotate on a frictionless pin passing through one end (Figure 1).
- (a) If the rod is released from rest in the horizontal position, what is its angular speed when the rod reaches its lowest position? (10 pts)
- (b) If the amplitude of the oscillation of the rod is small, find the period of oscillation. (10 pts)

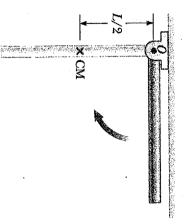
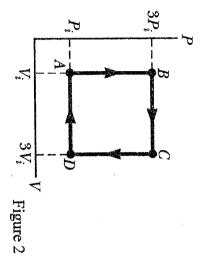



Figure 1

- 2. An idea gas ($\gamma = 5/3$) in an engine initially at P_i , V_i , and T_A is taken through a cycle as shown in Figure 2. The temperature $T_A = 300$ K. The pressure $P_i = 10^5$ Pa. The volume $V_i = 0.01$ m³
- (a) Find the net work done by the engine per cycle (5 pts).
- (b) Find the heat transferred into the engine from A to B. (10 pts)
- (c) Find the heat transferred into the engine from B to C. (10 pts)
- (d) Find the efficiency of the engine. (5 pts)

- 3. Write down the Maxwell's Equations.
- (a) Gauss's law. (4 pts)
- (b) Gauss's law for magnetism. (3 pts)
- (c) Maxwell-Faraday equation (Faraday's law of induction). (4 pts)
- (d) Ampère's circuital law (with Maxwell's correction). (4 pts)

	4			
迁	华	宗	始	
峋		所	#	,
40		班	一個	
			年)	
政	<u>m</u>	图	度	
禁止使用掌上型計算機	普通物理	材料科學與工程學系二年級、物	九十九	
		理學第	故	
		系物3	#	
		理組	旗	
		二年	强	
		級、物理學系奈米與光電科學組二年級	轉學招生考試	

- 4. A long coaxial cable (length ℓ) has a thin, cylindrical conducting shell of radius b concentric current I in opposite directions. with a solid conducting cylinder of radius a as in Figure 3. The conductors carry the same
- (a) Find the magnitude of the magnetic field $\vec{B}(r)$ in the region between the conductors
- (a < r < b). (5 pts)
- (b) Show that the inductance of the coaxial cable is $L = \frac{\mu_0 \ell}{2\pi} \ln \left(\frac{b}{a}\right)$. (10 pts)
- (c) What is the magnetic energy stored in the coaxial cable? (5 pts)
- 5. A charge q is injected into a mass spectrometer, as shown in Figure 4. In the velocity selector, the electric field is \bar{E} (x direction) and the magnetic field is \bar{B}_m (into page). The magnetic

field in the mass spectrometer is \vec{B}_0 (into page).