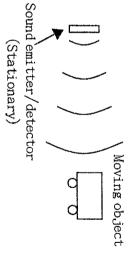
颲 招

共


注意事項	科目	条所班别	招生學年度	
【禁用計算機】	普通物理	物理學系二年級、電機、	九十七	
		工程學系二年級	招生類別	
			轉學招生考試	

- are not given in a problem must be clearly explained or clearly defined. You could define or introduce necessary symbols if not given. Symbols in your answer that
- taker should have reasonable values if numerical calculations are required. You could assume necessary parameter values if not given. Parameters assumed by the test
- A numerical answers is considered correct if the order of magnitude is correct.
- (12%) Suppose a Geosynchronous satellite has mass 500 kg.
- to be? (6 %) a) What is the height (order of magnitude) above the Earth surface that such a satellite has
- b) How much energy does it take to launch this satellite from the ground to its orbit? (6 %) Gravitational constant: $G = 6.673 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2}$.

Mass of the Earth: $M_E = 5.98 \times 10^{24}$ kg.

Mean radius of the Earth: $R_E = 6.37 \times 10^6 \text{ m}$

'n (10%) Let's try to design a speed detector the right figure. Assume that the sound away from the emitter/detector, as shown in and an object can move either towards or emitter/detector is stationary at the origin audible sound. Suppose a

detector has a working range just as the human ears do, roughly 20Hz ~ 20KHz, and that can detect when the object is moving a) towards (5%) or b) away from the detector (5%)? the sound emitter generates a 6 KHz sound wave. What is the maximum speed this device

က the radiation distribution of such a person? (5 %) (10%) If the human body can be considered as a black body, what is the total radiation power per unit area of a normal person? (5 %) What is the peak value of the wavelength of

Stefan-Boltzmann constant $\sigma = 5.670 \times 10^{-8} \text{ W/m}^2$.

The constant related to the peak wavelength: 2.898×10^{-3} m·K

4, (6%) How much energy is stored in a parallel-plate capacitor after fully charged by a the separation of plates is 1mm. voltage difference $\Delta V = 10V$? Assume the dimensions of each plate are (1cm × 1cm), and

Permittivity of free space $\varepsilon_0 = 8.854 \times 10^{-12} \,\text{C}^2/\text{N} \cdot \text{m}^2$

國立東華大學招生考試試題

共ン頁第2頁

		【禁用計算機】	注意事項
		普通物理	料目
	工程學系二年級	物理學系二年級、電機	条所班别
轉學招生考試	招生類別	九十七	招生學年度

- 'n (8%) Suppose we have built a Carnot engine that operates between a hot and a cold the efficiency of the Carnot engine is 30.0%. Find the temperatures of the two reservoirs. reservoir. Assuming the temperature difference between the two reservoirs is 150 K, and
- 6. (12%) Find the speed of propagation for the following waves, assuming SI units

$$a. F_1(x, t) = (0.50 \text{ m}) \sin(1.50 x + 0.30 t) (3 \%)$$

b.
$$F_2(x, t) = (0.25 \text{ m}) \cos[2.00(x - 0.45 t)] (3\%)$$

c.
$$F_3(x, t) = (0.3 \text{ m}) \sin(1.50 x - 0.45 t + \pi) (3 \%)$$

d.
$$\frac{\partial^2 F_4(x,t)}{\partial x^2} = (7.30) \frac{\partial^2 F_4(x,t)}{\partial t^2}$$
 (3 %)

7. (6%) A small stone of mass m is thrown from a place of height h above the ground with an initial velocity v as shown in the right figure. How

