

Department of physics, National Cheng Kung University, Taiwan (國立成功大學物理系) Tay-Rong Chang (張泰榕) 2017/May./8

1

- 1. 為什麼我們要關注材料物理...
- 2. 要聽懂這場演講的基本知識 ^{能帶理論} 計算方法
- 3. 所以,最近我們發現了什麼 拓樸材料
 - i) 什麼是凝態物理中的拓樸
 - ii) 拓樸絕緣體與可能的應用
 - iii) 新類型拓樸相: 拓樸半金屬與拓樸超導體

- ●百萬年以前:石頭,樹枝
- ●石器時代: 製作石器工具
- ●陶器時代:辨識材料,以火製作陶器
- 青銅(鐵器)時代: 煉製金屬
- ●19世紀:煤礦,合金
- ●20世紀:半導體,石油
- ●21世紀:???

- High Tc superconductors (Cuprates, Fe-based)
- Colossal magnetoresistance (LaCaMnO₃)
- Half-metal (CrO_2 , Fe_3O_4 , $SrRuO_3$)
- Nanotube, Graphene
- Multiferroic (TbMnO₃, TbMn₂O₅)
- Large spin-orbital coupling materials : Rashba material (BiTel), Iridate (Sr_{n+1}Ir_nO_{3n+1}), transition metal dichalcogenides (TMD), Topological materials.

1. 為什麼我們要關注材料物理...

2. 要聽懂這場演講的基本知識

能帶理論 計算方法

3. 所以,最近我們發現了什麼

拓樸材料

- i) 什麼是凝態物理中的拓撲
- ii) 拓樸絕緣體與可能的應用
- iii) 新類型拓樸相: 拓樸半金屬與拓樸超導體

計算方法

7

Step 1 Density functional theory (DFT)

Step 3

原則上,只需給定元素種類與晶格位置,可求得所有物理量, 不須額外實驗參數,因此稱為ab-initio(from the beginning).

用電腦來做材料實驗...

我們像理論又像實驗,像物理又像化學

我們主要在幹嘛

馬後炮:解釋實驗現象

煉金術:預測新材料 又 理解自然,找有趣的物理!!

1. 為什麼我們要關注材料物理...

- 2. 要聽懂這場演講的基本知識 ^{能帶理論} 計算方法
- 3. 所以,最近我們發現了什麼
 - 拓樸材料
 - i) 什麼是凝態物理中的拓樸
 - ii) 拓樸絕緣體與可能的應用
 - iii) 新類型拓樸相: 拓樸半金屬與拓樸超導體

能帶幾何結構:斜率,能隙大小,直接能隙或間接能隙...etc

11

Math => real spaceGauss-Bonnet Theorem:igenusg=0igenusigenusigenusgenusg=1g=1g=1g=1

Phys => momentum space

wavefunction is smoothly

wavefunction is NOT smoothly

wavefunction is NOT smoothly

wavefunction is smoothly

拓樸材料的特徵

The gapless surface state is the hallmark of topological phase.

M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. **82**, 3045 (2010) X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. **83**, 1057 (2011)

拓樸材料(絕緣體): Bi₂Se₃

Theory

ARPES

Bulk: insulating gap topological Z₂ invariant odd/even number surface states

Surface: gapless surface states

spin-momentum locked

Angle-Resolved Photoemission Spectroscopy (ARPES)

拓樸材料(絕緣體): Bi₂Se₃

Y. Xia et al. Nature Physics **5**, 398 (2009) D. Hsieh et al. Nature **460**, 1101 (2009)

18

CB

磁性記憶體(M-RAM)

Thickness of the films (log units)

19

20

21

ORIGINAL ARTICLE

Newtype large Rashba splitting in quantum well states induced by spin chirality in metal/topological insulator heterostructures (*Nature*) NPG Asia Materials 8, e332 (2016)

The spin splitting in metal/TI is not due to potential gradient.

1

1. 為什麼我們要關注材料物理...

- 2. 要聽懂這場演講的基本知識 ^{能帶理論} 計算方法
- 3. 所以,最近我們發現了什麼

拓樸材料 i) 什麼是凝態物理中的拓樸

ii) 拓樸絕緣體與可能的應用

🔶 iii) 新類型拓樸相: 拓樸半金屬與拓樸超導體

Topological phases

Insulating phase

Topological insulator: Bi_2Se_3 , Bi_2Te_3 , LuPtBi ...etc Topological Kondo insulator: SmB_6 , YbB_6 ... etc Weak topological insulator: KHgSb, Bi_4Br_4 ... etc topological crystalline insulator: SnTeTopological superconductor: $Bi_2Se_3/NbSe_2$, $Cu_xBi_{1-x}Se_3$...etc

拓樸材料(半金屬) vs 高能基本粒子

High energy Condensed matter Dirac Fermion Graphene (e) $H = \begin{pmatrix} v\vec{\sigma} \cdot \vec{k} & \mathbf{m} \\ \mathbf{m} & -v\vec{\sigma} \cdot \vec{k} \end{pmatrix}$ E_F (eV) 0.0 k_v (Å⁻¹) -0.4 Weyl semimetal m=0 TaAs: Theory (2015)S.-M. Huang et al, Nat. commun. 6, 7373 (2015) Weyl Fermion H. Weng et al, Phys. Rev. X 5, 011029 (2015) **TaAs: Experiment** $v\vec{\sigma}\cdot\vec{k}$ $-v\vec{\sigma}\cdot\vec{k}$ S.-Y. Xu et al, Science 349, 613 (2015) B. Q. Lv et al, Phys. Rev. X 5, 031013 (2015) L. X. Yang, Nat. phys. 11, 724 (2015) where $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 0.5 mm

0.4

Nielsen-Ninomiya theorem: (Nuclear Physics B185 (1981) 20-40) Equal numbers of $\gamma = +1$ and -1 WFs.

拓樸材料: Dirac and Weyl semimetal

-0.1 0.0 0.1 $k_{x}(Å^{-1})$

 k_{r}

Dirac point (4重簡併)

$$H = \begin{pmatrix} v\vec{\sigma} \cdot \vec{k} & 0\\ 0 & -v\vec{\sigma} \cdot \vec{k} \end{pmatrix}$$

無質量的電子

Weyl semimetals:

- 1. Provide the realization of Weyl fermions (analogy with 3D graphene)
- 2. Extend the classification of topological phases of matter beyond insulators
- 3. Magnetic monopole in k-space (topological number called "chiral charge")

TaAs

S.-Y. Xu et al, Science **349**, 613 (2015) **NbAs** S-.Y. Xu... **T.-R. Chang** et al Nat. Phys. **11**, 748 (2015) **TaP**

S-.Y. Xu... **T.-R. Chang** et al Sci. Adv. **1**, e1051092 (2015)

NbP

I. Belopolski ... **T.-R. Chang** et al PRL **116**, 066802 (2016) **NbP (STM/STS)** H. Zheng... **T.-R. Chang** et al ACS nano **10**, 1378 (2016) G. Chang... **T.-R. Chang** et al PRL **116**, 066601 (2016)

Disadvantages of TaAs family

(1) 3D structure. Adversely to fabricate thin-film (e. g. MBE).

(2) Untunable Weyl points. Adversely to explore topological metal-insulator transition.

Our goals

(1) Searching Weyl semimetal with layer structure. (fabricating thin-film)

(2) Searching tunable Weyl semimetal. (exploring topological phase transition)

29

ARTICLE

Received 23 Sep 2015 | Accepted 7 Jan 2016 | Published 15 Feb 2016

OPEN DOI: 10.1038/ncomms10639

Nature Commun. 7, 10639 (2016)

Prediction of an arc-tunable Weyl Fermion metallic state in $Mo_xW_{1-x}Te_2$

Our goals

- (1) Searching Weyl semimetal with layer structure. (fabricating thin-film)
- (2) Searching tunable Weyl semimetal. (exploring topological phase transition)

Weyl semimetal (外爾半金屬) ARTICLE **OPEN** Received 23 Sep 2015 | Accepted 7 Jan 2016 | Published 15 Feb 2016 DOI: 10.1038/ncomms10639 *Nature Commun.* 7, 10639 (2016) Prediction of an arc-tunable Weyl Fermion metallic state in $Mo_xW_{1-x}Te_2$ (insulator) WTe₂ (Weyl) $Mo_{0.2}W_{0.8}Te_2$ 0.12 cut cut min. gap 0.12 0.12 $k_y(2\pi/b)$ $k_y(2\pi/b)$ W1(W2(+ We suggested: 0.115 0.115 Mo doping 0.11 0.11 0.04 0.06 0.08 0.1 0.04 0.06 0.08 0.1 $k_r(2\pi/a)$ $k_x(2\pi/a)$ 0.15 *b*4 0.10 reduce strength of SOC Energy (eV) Energy (eV) 0.10 as well as W1(-) <mark>gap ~ 1 m</mark>eV b3 lattice constants W2(+) 0.05 0.0 0.0 0.09 0.03 0.09 Momentum $(2\pi/a)$ Momentum $(2\pi/a)$

30

31

ARTICLE

Received 23 Sep 2015 | Accepted 7 Jan 2016 | Published 15 Feb 2016

DOI: 10.1038/ncomms10639 OPEN

Nature Commun. 7, 10639 (2016)

Prediction of an arc-tunable Weyl Fermion metallic state in $Mo_xW_{1-x}Te_2$

32

ARTICLE

Received 23 Sep 2015 | Accepted 7 Jan 2016 | Published 15 Feb 2016

DOI: 10.1038/ncomms10639 OPEN

Nature Commun. 7, 10639 (2016)

Prediction of an arc-tunable Weyl Fermion metallic Mature Commun. 7, state in $Mo_xW_{1-x}Te_2$

Surface spectral weight simulation

33

ARTICLE

 $Mo_x W_{1-x}Te_2$ is not only a Weyl semimetal with layer structure, but a tunable Weyl semimetal. This system is a good candidate for investigating topological metal-insulator phase transition.

Weyl semimetal: $Mo_{x}W_{1-x}Te_{2}$

34

Experimental results

(3) Phys. Rev. Lett. 117, 266804 (2016)

100mV

 $(\frac{2\pi}{a}, 0)$

100mV

Normal metal vs Topological metal

Normal metal: 2D Fermi surface

Topological metal: 1D Nodal-line

Q:

Nodal-line semimetals have yet to be found in real materials, even in DFT level.

Previous works

Our goal:

Searching Nodal-line Fermi surface in real materials.

Topological superconductor(拓樸超導體)

39

PHYSICAL REVIEW B 93, 245130 (2016)

Topological Dirac surface states and superconducting pairing correlations in PbTaSe₂

Topological superconductor(拓樸超導體)

Conclusion: Topological materials

DFT + ab-initio tight-binding:

- Comprehensively explore electronic structures of emerging materials
- Providing detailed theoretical interpretation for the experimental results.
- Prediction for new types of topological materials.

Why topology is interesting in condensed matter physics? Exotic states and potential applications:

QAH, Magnetic monopole, Majorana fermion, Spintronics, Quantum computation...etc

結論:馬後炮與煉金術還是可以做點東西

42

Density functional theory (DFT) + ab-initio tight-binding model:

Topological insulator

3D Topological insulator Nat. Phys. Nat. Com. PRL

Topological semimetals

Science

Pb/Ge

-1.0 -0. Energy (eV) -0.5

-15

PRL

Nodal-line: PbTaSe₂ Nat. Com.

PbAu/Pb

NJP

Acknowledgements

43

ARPES (topological)

M. Zhaid Hasan (Princeton University)

Vidya Madhavan (UIUC)

Arun Bansil Hsin L (Northeastern University) (NUS)

Yoshinori Okada (Tohoku University)

Hsin Lin (林新) (NUS)

ARPES (2D materials and thin-film)

Zhi-Xun Shen (Stanford University)

Jenny Hoffman (Harvard University)

Titus Neupert (U. Zurich)

Alessandra Lanzara (Lawrence Berkeley National Laboratory)

Fangcheng Chou(周方正) (CCMS)

Single crystal

Shin-Ming Huang (NSYSU)

Shu-Jung Tang (唐述中) (NTHU)

Shuang Jia(贾爽) (Peking University)

Horng-Tay Jeng (鄭弘泰) (NTHU)

To see a world in a grain of sand ... -William Blake

Thank you !